skip to main content


Search for: All records

Creators/Authors contains: "Li, Zongyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 13, 2024
  2. Free, publicly-accessible full text available July 5, 2024
  3. Purpose: We propose a formal framework for the modeling and segmentation of minimally invasive surgical tasks using a unified set of motion primitives (MPs) to enable more objective labeling and the aggregation of different datasets. Methods: We model dry-lab surgical tasks as finite state machines, representing how the execution of MPs as the basic surgical actions results in the change of surgical context, which characterizes the physical interactions among tools and objects in the surgical environment. We develop methods for labeling surgical context based on video data and for automatic translation of context to MP labels. We then use our framework to create the COntext and Motion Primitive Aggregate Surgical Set (COMPASS), including six dry-lab surgical tasks from three publicly available datasets (JIGSAWS, DESK, and ROSMA), with kinematic and video data and context and MP labels. Results: Our context labeling method achieves near-perfect agreement between consensus labels from crowd-sourcing and expert surgeons. Segmentation of tasks to MPs results in the creation of the COMPASS dataset that nearly triples the amount of data for modeling and analysis and enables the generation of separate transcripts for the left and right tools. Conclusion: The proposed framework results in high quality labeling of surgical data based on context and fine-grained MPs. Modeling surgical tasks with MPs enables the aggregation of different datasets and the separate analysis of left and right hands for bimanual coordination assessment. Our formal framework and aggregate dataset can support the development of explainable and multi-granularity models for improved surgical process analysis, skill assessment, error detection, and autonomy. 
    more » « less
    Free, publicly-accessible full text available May 5, 2024
  4. This paper discusses algorithms for phase retrieval where the measurements follow independent Poisson distributions. We developed an optimization problem based on maximum likelihood estimation (MLE) for the Poisson model and applied Wirtinger flow algorithm to solve it. Simulation results with a random Gaussian sensing matrix and Poisson measurement noise demonstrated that the Wirtinger flow algorithm based on the Poisson model produced higher quality reconstructions than when algorithms derived from Gaussian noise models (Wirtinger flow, Gerchberg Saxton) are applied to such data, with significantly improved computational efficiency. 
    more » « less
  5. Abstract Background

    Analysing kinematic and video data can help identify potentially erroneous motions that lead to sub‐optimal surgeon performance and safety‐critical events in robot‐assisted surgery.

    Methods

    We develop a rubric for identifying task and gesture‐specific executional and procedural errors and evaluate dry‐lab demonstrations of suturing and needle passing tasks from the JIGSAWS dataset. We characterise erroneous parts of demonstrations by labelling video data, and use distribution similarity analysis and trajectory averaging on kinematic data to identify parameters that distinguish erroneous gestures.

    Results

    Executional error frequency varies by task and gesture, and correlates with skill level. Some predominant error modes in each gesture are distinguishable by analysing error‐specific kinematic parameters. Procedural errors could lead to lower performance scores and increased demonstration times but also depend on surgical style.

    Conclusions

    This study provides insights into context‐dependent errors that can be used to design automated error detection mechanisms and improve training and skill assessment.

     
    more » « less